TPU Inference Servers for Efficient Edge Data Centers - DOWNLOAD

AWS doubles down on enterprise transformation with IoT TwinMaker at Vegas confab

AWS doubles down on enterprise transformation with IoT TwinMaker at Vegas confab

Amazon Web Services has announced AWS IoT TwinMaker, a new service that makes it faster and easier for developers to create digital twins of real-world systems like buildings, factories, industrial equipment, and production lines. Digital twins are virtual representations of physical systems that are regularly updated with real-world data to mimic the structure, state, and behavior of the objects they represent. AWS IoT TwinMaker makes it easy for developers to integrate data from multiple sources like equipment sensors, video cameras, and business applications, and combines that data to create a knowledge graph that models the real-world environment. With AWS IoT TwinMaker, many more customers can use digital twins to build applications that mirror real-world systems to improve operational efficiency and reduce downtime. There are no up-front commitments or fees to use AWS IoT TwinMaker, and customers only pay for the AWS services used.

Industrial companies collect and process vast troves of data about their equipment and facilities from sources like equipment sensors, video cameras, and business applications. Many customers want to combine these data sources to create a virtual representation of their physical systems (called a digital twin) to help them simulate and optimize operational performance. But building and managing digital twins is hard even for the most technically advanced organizations. To build digital twins, customers must manually connect different types of data from diverse sources. Then customers have to create a knowledge graph that provides common access to all the connected data and maps the relationships between the data sources to the physical environment. To complete the digital twin, customers have to build a 3D virtual representation of their physical systems and overlay the real-world data on to the 3D visualization. Once they have a virtual representation of their real-world systems with real-time data, customers can build applications for plant operators and maintenance engineers that can leverage machine learning and analytics to extract business insights about the real-time operational performance of their physical systems. Because of the work required, the vast majority of organizations are unable to use digital twins to improve their operations.

AWS IoT TwinMaker makes it significantly faster and easier to create digital twins of real-world systems. Using AWS IoT TwinMaker, developers can quickly get started building digital twins of devices, equipment, and processes by connecting AWS IoT TwinMaker to data sources like equipment sensors, video feeds, and business applications. AWS IoT TwinMaker contains built-in connectors for AWS IoT SiteWise, Amazon Kinesis Video Streams, and Amazon S3 (or customers can add their own connectors for data sources like Amazon Timestream or Snowflake) to make it easy to gather data from a variety of sources. AWS IoT TwinMaker automatically creates a knowledge graph that combines and understands the relationships of the connected data sources, so it can update the digital twin with real-time information from the system being modeled. Customers can import existing 3D models, directly into AWS IoT TwinMaker to easily create 3D visualizations of the physical systems and overlay the data from the knowledge graph on to the 3D visualizations to create the digital twin. Once the digital twin has been created, developers can use an AWS IoT TwinMaker plugin for Amazon Managed Grafana to create a web-based application that displays the digital twin on the devices plant operators and maintenance engineers use to monitor and inspect facilities and industrial systems. For example, developers can create a virtual representation of a metals processing plant by associating data from the plant’s equipment sensors with real-time video of the various machines in operation and the maintenance history of those machines. Developers can then set up rules to alert plant operators when anomalies in the plant’s furnace are detected and display those anomalies on a 3D representation of the plant with real-time video from the furnaces, which can help operators make quick decisions on predictive maintenance before a furnace fails. With AWS IoT TwinMaker, many more customers can use digital twins to build applications that simulate their real-world systems to improve operational efficiency and reduce downtime.

“Customers are excited about the opportunity to use digital twins to improve their operations and processes, but the work involved in creating a digital twin and custom applications for different use cases is complicated, expensive, and prohibitive for most,” said Michael MacKenzie, General Manager, AWS IoT. “AWS IoT TwinMaker includes the built-in capabilities most customers need for their digital twins, such as connecting to data across disparate sources, modeling physical environments, and visualization of data with spatial context. With today’s launch of AWS IoT TwinMaker, more customers can now have a holistic view of their industrial equipment, facilities, and processes to monitor and optimize all of their operations in real time.”

AWS IoT TwinMaker is available today in preview in US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), and Europe (Ireland) with availability in additional AWS Regions coming soon.

Article Topics

 |   |   |   | 

Comments

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Featured Edge Computing Company

Edge Ecosystem Videos

Latest News